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Abstract— A renaissance of memory research has created 

many memory technologies with various trade-offs. Yet, 

computing systems are bottlenecked by memory accesses. 

How do we unlock the use of these emerging memories to 

overcome this bottleneck? We envision systems consisting of 

massive memories that are diverse and tightly integrated with 

compute, from the device technology to the software levels. 

I. INTRODUCTION 

Future computing systems must do more with less: higher 

throughput at significantly lower energy than today. 

Otherwise, computing’s energy demands can far exceed 

sustainable energy production (projections in [1], [2]). 

Workloads such as Artificial Intelligence/Machine Learning 

(AI/ML) require massive off-chip memory and are throttled 

by the “memory wall” – significant time and energy spent 

shuttling data between compute and memory chip(s) [3]. This 

memory wall worsens as semiconductor technologies face the 

“miniaturization wall” – the inability to gain device density in 

2D due to physical limits and fabrication complexity [4]. We 

face these walls just as memory needs explode for AI/ML, big 

data, and networked systems [5]–[7]. Thus, the large demands 

on memory, the memory wall, and the miniaturization wall 

are three critical challenges for future computing systems. 

While software generally assumes a random-access 

memory address space with uniform latency and bandwidth, 

software use of that memory is far from uniform. Von 

Neumann recognized this fact, stating that “various parts of 

this memory have to perform functions which differ somewhat 

in their nature and considerably in their purpose” [8]. While 

the current hardware memory hierarchy – SRAM, DRAM, 

Flash – is already diverse, these devices alone are insufficient 

to meet software needs. Instead of expecting new devices to 

replace existing memory, we must focus on integration of 

memory with new capabilities as a tool in our toolbox. 

For logic circuits, the field-effect transistor (FET) reigns 

supreme: we assume that will continue to be the case. In 

contrast, for memory, an abundance of new and traditional 

devices use a variety of physical mechanisms and materials 

[9], [10]. Software and system architects typically want 

memory that is better in all attributes; instead, we should 

exploit the wide range of tradeoffs across technologies (Table 

I) because domain specificity offers high efficiency. Memory 

research currently often focuses on optimizing individual 

attributes (e.g., specific entries in device comparison tables, 

as in Table II). Instead, we must match sets of desired 

attributes derived from software use cases (Sec. II).  

Beyond being massive and diverse, memory must be 

tightly integrated with compute. Von Neumann “ideally … 

desire[d] an indefinitely large memory capacity” with any 

"word … immediately available … considerably shorter than 

… a fast electronic multiplier.” [11] Similar desires hold true 

for energy. We envision tightly integrated – both physically 

and architecturally – compute-memory systems: memory 

matched to software, with abstractions to expose and exploit 

diverse memory attributes (Sec. II, Fig. 2). 

Unable to achieve this capacity, and “forced” into “a 

hierarchy of memories” [11], the memory wall is often 

incorrectly attributed to the von Neumann architecture ([12], 

[13]). Physical implementation of memory hierarchy with 

latency-capacity tradeoffs has led to memory sub-systems in 

separate chips for technological, cost, and business reasons 

(e.g., SRAM, DRAM, Flash). However, it is conceivable to 

integrate massive, diverse memories onto compute chip(s); 

we must focus on system-level benefits this brings (Sec. III). 

Thus, irrespective of the architecture – von Neumann or 

non-von Neumann, we must provide: (1) massive amounts of 

memory with (2) diverse functionality, (3) tightly integrated 

both physically and architecturally with compute (Fig. 1). We 

must (4) exploit this integration in the software stack. We 

focus on points (1)-(3). (4) is beyond this paper’s scope. 

II.  SOFTWARE USE CASES FOR DIVERSE MEMORIES 

We focus on compute and memory, with bulk data storage 

out of our scope. We consider three (of many) use cases (Fig. 

3). Attributes include: (1) read/write access frequency; (2) 

read/write address predictability (e.g., sequential access by 

address order); and (3) data lifetime (i.e., time from variable 

creation to destruction). Based on such software use cases, 

diverse memory technologies degenerate into bands (Table 

III). These bands guide future optimizations in a vast, multi-

dimensional design space (Fig. 4). For each band, we must 

optimize the relevant combination of attributes, rather than 

focusing on a sole few and neglecting others.  

Type A. Frequent Reads, Infrequent Writes, Predictable 

Accesses: Such software writes data rarely and reads written 

data many times, with predictable (often sequential) accesses, 

which enables data aggregation with write buffering and read 

pre-fetching. Examples include types of AI/ML inference 

weight memory and processor instruction caches (a few 

thousand instructions executed billions of times – Fig. 3). The 

write vs. read imbalance presents an opportunity to trade 

write costs (energy, latency, endurance) for better reads 

(energy, delay, retention) which must be co-optimized with 

density, technology choice (e.g., MRAM, RRAM, PCM), and 

encoding (e.g., multi-bit/cell). While reads are prioritized, 

some minimal write characteristics are required depending on 

system needs (e.g., hourly model updates for Large Language 

Models). For example, improving MRAM/RRAM endurance 

alone without improving write energy may not be sufficient 
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for energy-constrained systems (Fig. 5 (a)), as utilizing 

gained endurance cycles can come with a large energy cost.  

Type B. Frequent Writes, Few Reads per Write, Short 

Data Lifetime: In this use case, software writes data in (often 

sequential) blocks, and soon reads it (sometimes only once), 

discarding it thereafter (e.g., streaming I/O, AI/ML 

activations, and data analytics, with block sizes and write-to-

read times of 10’s of kB in 10’s of μs [14], MBs in ms [15]–

[18], and 1-128MBs in seconds [19], [20]). Short data 

lifetimes enable trading retention for speed, density, or 

energy efficiency (e.g., gain cells [21], [22], MRAM [23], 

and FeRAM [24]). Consider retention-speed trade-off curves 

in gain cell design [21], [22] (Fig. 5 (b)): design choice (VTH) 

along this curve must be driven by the application. This curve 

can shift towards ideal corners by other design knobs (e.g., 

voltage), device improvement (sharper on/off transition or 

lower SS), or circuit innovations (e.g., hybrid gain cells [25]). 

Type C. Random Reads, Sequential Writes: Such software 

reads randomly (e.g., Zipf-like) but writes sequentially across 

contiguous blocks, e.g., buffers for a file system. For 

example, during memory defragmentation, randomly updated 

values are read and written sequentially back (e.g., in live 

data write logs). Random read delay can be hidden via multi-

threading, but low read energy is critical. On-chip gain cells 

offer much lower access energy than today’s off-chip DRAM.  

III. TIGHT INTEGRATION WITH COMPUTE  

The physical layer of memory-compute integration is 

illustrated in Table IV. High bandwidth memory access 

requires high connection density between memory and 

compute [26]–[29]. While today’s 2.5D/3D advanced 

packaging has connection densities that are far lower than on-

chip integration, the pin pitch of packaging technology is 

projected to shrink to below 1 μm [30], [31], thus providing a 

continuum of 3D interconnects down to very fine-pitched 

(10’s of nm via monolithic 3D integration). These high 

connection densities enable re-architecting the system to 

exploit potentially massively increased bandwidth [26], [27].  

Compute-in-memory (CIM) architectures aim to reduce 

data movement by performing computations directly within 

memory arrays. While CIM performs matrix-vector 

multiplication with high parallelism [32], AI/ML models 

require additional operations, e.g., vector-vector 

multiplication for attention [17] and depth-wise separable 

convolution [18], that are challenging for CIM [33]. 

Programmability and flexibility are especially challenging as 

the memory/compute elements are fixed at design time. 

Analog CIM non-volatile memory (NVM) device non-

idealities (Fig. 6 (a)) degrade accuracy due to large device 

variations, weight programming non-linearity, limited on-off 

ratios, state drift, and array IR drop [34]. Even chip-in-the-

loop fine-tuning fails to maintain software accuracy for 

RRAM-based CIM [35]. Analog CIM requires costly DACs 

and ADCs to convert/quantize data, limiting energy 

efficiency, throughput, and density [35], [36]. Small weight 

kernels have low array utilization and can’t amortize these 

input and output peripheral circuits. Large weight kernels that 

exceed single memory array capacity require post-ADC 

digital accumulation, reducing energy efficiency [37], [38]. 

Analog CIM exhibits attractive array-level energy efficiency 

for low-precision operations (e.g., <10 fJ per 4-bit OP), but 

this diminishes rapidly with bit width (e.g., >100 fJ per 8-bit 

OP) due to extra ADC energy to overcome thermal noise: 

each extra bit of precision requires quadruple the capacitance 

and energy [37]. As CIM arrays get larger, ADCs are noise-

limited, and amortization benefits saturate [37].  

Digital CIM follows the same computing model as 

traditional digital systems, with separate digital logic and 

(digital) memory elements. Digital CIM provides full bit 

accuracy, avoiding analog CIM’s SNR limitations. In some 

cases, logic elements are tightly integrated within the array 

itself (Fig. 6 (b)). To match memory cell pitch and achieve 

high density requires simple logic elements – for example, 6T 

SRAMs modified with a few added transistors to implement 

basic logic [39]–[41]. This can impede programmability for 

different workloads and increase runtime, e.g., bit-serial 

compact ALUs to replace large-area multipliers [39].  

If AI/ML models are larger than on-chip capacity, naïvely 

relying on off-chip memory results in the usual memory wall – 

regardless of analog CIM, digital CIM or other architectures. 

The solution is to orchestrate AI/ML execution across a 

system of multiple chips without any off-chip memories, 

instead relying on the sum total of each chip’s local on-chip 

memory/compute elements [16], [26], [42]. Combined with 

special mappings of the AI/ML model to the system to 

minimize inter-chip traffic by co-optimizing per-chip memory 

size, heterogeneous inter- and intra-chip interconnects, and 

idle power via fine-grained power management, such a system 

can create the illusion of a much larger chip, e.g., a Dream 

Chip with all compute/memory on-chip. Illusion is thus 

distinct from traditional parallel processing. Such Illusion 

Systems (Fig. 7) have been well established for digital 

accelerator AI/ML systems of various sizes (e.g., 8× larger 

than single chips) with system-level energy and execution 

time within 5% of corresponding Dream Chips [16], [42]. 

Case Studies – Digital AI/ML Accelerators with Tightly 

Integrated Memory: Hybrid Gain Cell (HGC) has 3.6× 

density and lower energy than high-current (HC) SRAM (Fig. 

8). HGC integrated with RRAM (Fig. 9) [43] for AI/ML 

training and inference saves > 80% energy. Fig. 10 shows how 

RRAM-based system non-volatility can provide up to 9× 

energy benefits vs. traditional memory systems (e.g., SRAM, 

off-chip DRAM and NAND Flash), even with foundry RRAM 

macros’ similar density to foundry SRAM [15], [16]. 

IV. CONCLUSION 

Memory must evolve from a uniform, random-access view 

to a heterogeneous collection of different memories optimized 

for different uses [44]. Memory’s diverse characteristic 

tradeoffs must be exposed via appropriate abstraction to 

software (e.g., endurance vs. retention, energy vs. latency) for 

end-to-end device-system-software optimization. Tight 

integration (monolithic, 3D, 2.5D) of new memory is key to 

large capacity, low latency, and high bandwidth. Demands 

will still outpace capacity; thus, proper co-design of multi-chip 

system communication, e.g., Illusion Systems, is critical. 
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Fig.1: Future of memory: massive, diverse, 

and tightly integrated with compute. 

Table I: Memory table based on device-level specifications that is driven by software use. Assume 1T1R 

structure for RRAM, MRAM, PCM with Si FEOL FET. Assume 3D NAND structure for FeFET. HGC: 

hybrid gain cell with Si read transistor and OS write transistor. OS-OS GC: 2T gain cell with both 
OSFETs for read and write. Standby power includes refresh power. Density is equivalent density after 

considering multiple layers. Possibility of single vs. multiple layer integration on-chip with logic. 

 
Read 

energy 
Write 

energy 
Standby 
power 

Read  
latency 

Write 
latency 

Endurance Retention Density 
Single  
layer 

Multiple 
layers 

High 
FeRAM, 
DRAM 
Flash 

RRAM, 
MRAM, 
PCM, 
Flash 

DRAM Flash Flash 

DRAM, 
SRAM, OS-

OS GC, 
HGC 

Flash, RRAM, 
MRAM, PCM, 

FeFET, 
FeRAM 

3D Flash, 3D 
FeFET 

SRAM 
 

Med. 
RRAM, 
MRAM, 

PCM 

DRAM, 
FeRAM 

SRAM 

RRAM, 
PCM, 

FeRAM, 
DRAM 

FeRAM, 
DRAM, 
PCM, 
RRAM 

FeRAM, 
MRAM 

OS-OS GC, 
HGC 

3D DRAM, 
3D OS-OS 

GC 

MRAM, 
PCM, 

RRAM, 
FeRAM, 

HGC 

3D 
FeFET, 
OS-OS 

GC 

Med.-
Low 

FeFET, 
OS-OS 

GC 
FeFET 

HGC, OS-OS 
GC 

MRAM, 
OS-OS 

GC, 
FeFET 

OS-OS 
GC, HGC, 

MRAM, 
FeFET 

PCM, 
RRAM 

DRAM 
HGC, MRAM, 
RRAM, PCM, 

FeRAM 
DRAM 

 

Low 
SRAM, 
HGC 

SRAM, 
HGC, 

OS-OS 
GC 

RRAM, MRAM, 
PCM, FeFET, 
FeRAM, Flash 

SRAM, 
HGC 

SRAM 
Flash, 
FeFET  

SRAM Flash 
Flash, 
DRAM 

 

Table III: Improvements needed for each memory technology to be used in the software use cases, based on state-of-

the-art macro demonstrations. Integration can play a more important role than memory types, this is why 3D V-cache 
and DRAM fall into the same band, while OS-OS gain cell and HGC differ. We exclude 3D Flash and 3D FeFET 

from this table as they mainly target bulk data storage. Further research may realize CIM via these devices [46]. 

 SRAM 3D V-Cache DRAM OS-OS Gain Cell 
Hybrid Gain 

Cell 
RRAM MRAM PCM FeRAM 

A 
Standby 
power 

Read energy & 
speed & standby 

power 

Read energy & 
speed & standby 

power 

Read speed & 
capacity 

Capacity  
Write & read 

energy & 
endurance 

Write & 
read 

energy  

Write & read 
energy & 

endurance 

Read 
speed & 
energy 

B Density  Standby power  Retention Capacity Capacity 
Endurance & 
write energy  

Write 
energy 

Endurance & 
write energy 

Read 
energy 

C Capacity 
Read & write 

energy & speed  
Read & write 

energy & speed  
Capacity & 

read & write speed 
Capacity & 
write speed 

ALL ALL ALL ALL 

 

 

Table II: Traditional memory table with each attribute in isolation. 

Endur. = Endurance 

 SRAM DRAM RRAM MRAM 

Energy Low Med High High 

Speed High Med Low Low 

Density Low Med High High 

Endur. High High Low Med 

 

 

Fig. 3: Software use case data types categorized by read/write frequency and 

access pattern. For type A, Zsim [45] shows instruction cache misses <5×10-6 with 

thousands of instructions executed billions of times for each application run. 

Fig. 2: Data-to-memory mapping by abstracting data types from 

software applications and memory classes from memory 
technologies. Memory classes are tightly integrated in the physical 

layer via a continuum of 3D vertical interconnects through monolithic 

integration or 2.5D/3D advanced packaging and allocated to different 

data types through data buses. 

Fig. 4: (right) Domain-specific memory macro-level needs (i.e., 

including all peripheral circuits), derived from software use cases 

and system requirements. Three metrics sub-plots, where the 
relationships among memory types can be (a) subsets, (b) 

intersections, and (c) disjoint sets, exhibit the diverse and domain-

specific needs for the memory types. 
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Table IV: Memories can be in the logic process itself (SRAM), in package (2.5D/3D chip stacking), monolithically 3D integrated in the back-end-of-line, 
or monolithically 3D integrated atop Si FETs in the front-end-of-line. Monolithic integration has higher connection pin density than in-package integration 

but requires fabrication at low temperatures. Off-chip package interfaces have limited bandwidth and significant latencies due to the macroscopic size and 

high capacitance of package pins and limited number of parallel connections. High-bandwidth memory (HBM) uses 5 – 50 μm-sized through-silicon vias 
(TSV) [26],[47] to bring logic and memory closer together, enabling high-bandwidth and lower-energy memory access. The interface protocols (e.g., DDR, 

HBM, PCIe, CXL, UCIe), are required as off-chip devices are fabricated by multiple entities, but can introduce energy, latency, and bandwidth overheads. 

These protocols are managed by software (from device drivers to operating systems), with minimum hardware support such as memory management units. 

 SRAM DRAM HBM DRAM Flash Gain cell RRAM MRAM PCM FeFET FeRAM 

Integration 
Logic 

process 

In-package 

(e.g. DIMM) 

In-package (3D stacked 

on logic chip) on 

interposer / substrate 

In-

package 

Monolithic 3D in BEOL or 

Monolithic 3D in BEOL 

with Si FET FEOL 

Monolithic 3D 

in BEOL with 

Si FET FEOL 

Monolithic 3D 

in BEOL with 

Si FET FEOL 

Monolithic 3D 

in BEOL with 

Si FET FEOL 

Monolithic 3D in Si 

FEOL or monolithic 

3D in BEOL 

Monolithic 3D 

in BEOL with 

Si FET FEOL 

Connection pin density High Low Medium Low High High High High High High 

Application Cache 
Main 

memory 
Main memory Storage Cache, main memory 

Storage, main 

memory 

Cache, main 

memory 

Storage, main 

memory 

Storage, main 

memory 

Storage, main 

memory 

 

Fig. 5: (a) Write energy-endurance subspace divided into 

three regions: ideal, domain-specific, and not-of-interest. The 
high-endurance, high-energy corner is not of interest, as the 

high write energy discourages frequent writes. (b) Gain Cell 

retention-speed subspace with trade-off curve (black) [22] 
that arises from a limited transistor ION/IOFF ratio. Curve shifts 

towards ideal corners (green) through other design knobs (e.g. 

voltage), device improvements like smaller SS and on/off 
transition region, or circuit innovations like hybrid gain cells. 

 

Fig. 8: (a) Hybrid gain cell has density 3× of HD SRAM and scalable to FinFET nodes with 

a cell size of ~1CGP×4MP, where CGP is the contacted gate pitch and MP is M0 pitch with 

an AB mask. The OSFET requires a modest channel length (LCH) of 34 nm assuming CGP 
of 51 nm.  (b) ITO FET with LCH = 40 nm, experimentally demonstrated. (c) Cadence 

Spectre circuit simulation for hybrid gain cell vs. SRAM memory macro with the same 

peripheral circuit and array architecture at 5nm node. HGC has less area, read energy, and 
standby power compared to HC SRAM iso-frequency (2GHz) at the macro-level. 

 

Fig. 6: CIM architectures can be broadly categorized into analog CIM 

or digital CIM. Analog CIM can be implemented with charge-based 

memories (SRAM [48], DRAM [49]) or resistance-based memories 
(RRAM [35], PCM [50], MRAM [51]). Analog CIM operates based 

on Ohm’s Law and Kirchoff’s law, with MVM results represented by 

the accumulated output current along bitline (BL) [35]. Digital CIM is 
typically implemented with charge-based memories with a localized 

computing unit that operates on the stored weight and the input 

activation signal. The resulting digital outputs are then summed using 
an adder tree to yield the final accumulated result [39]. The bitcell-

wise digital unit can range from a simple logic gate (e.g., NOR [40]), 

to more sophisticated circuits with some area penalty (e.g., a NOR 
gate, a full adder and multiplexer [39]). 

 

Fig. 9: Example of diverse memories integrated on the same chip. TEM images of 
(a) gain cell (b) RRAM and Si FET monolithically integrated on the same 130nm 

node chip. Monolithic 3D integration of gain cell and RRAM combines the non-

volatility of RRAM and high endurance of gain cell [43]. High-bandwidth data 
transfers between memories is enabled by high-density vertical 3D interconnects. 

 

Fig. 10: RRAM 1T-1R bit cells are 3× denser than 6T SRAM (0.042 µm2 [52] vs. 0.127 µm2 

[53] in TSMC N28). However, foundry-provided RRAM macros (including peripherals, 

controllers) do not provide the full density benefits at the system level [15], [16]. RRAM’s 
on-chip non-volatility provides substantial energy benefits for infrequent and intermittent 

edge AI/ML applications [54], [55] by reducing both idle energy between inferences and 

inference energy via RRAM-enabled fine-grained power gating [15], [16], [56]. For SRAM-
based chips, after a certain idle period, it is more energy-efficient to use backup NAND 

Flash [57] for weights (i.e., turning the chip off, re-fetching weights for new inputs). 

RRAM-based systems can thus reduce energy by 9× for AI/ML applications (e.g., 
MobileBERTTINY [15]). Low-leakage SRAMs (e.g., 8T SRAM [58]) shift this point to lower 

duty cycles, but incur large area penalties. Off-chip DRAM [59] has low refresh power, but 

its off-chip access results in 1.6× (or higher) energy vs. RRAM-based systems. 
 

Fig. 7: (a) The “Dream Chip” 
densely co-locates all memory and 

compute on-chip, quickly accessible 

at low energy. (b) Illusion System 
[42] of multiple chips on a sparely 

used inter-chip network, each with a 

certain minimum amount of on-chip 
memory and mechanisms for quick 

chip wakeup and shutdown. 
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