

 1

Future of Memory: Massive, Diverse, Tightly

Integrated with Compute – from Device to Software
Shuhan Liu, Robert M. Radway, Xinxin Wang, Jimin Kwon, Caroline Trippel, Philip Levis,

Subhasish Mitra, H.-S. Philip Wong, Stanford University, CA 94305, USA; E-mail:{shliu98, hspwong}@stanford.edu

Abstract— A renaissance of memory research has created

many memory technologies with various trade-offs. Yet,

computing systems are bottlenecked by memory accesses.

How do we unlock the use of these emerging memories to

overcome this bottleneck? We envision systems consisting of

massive memories that are diverse and tightly integrated with

compute, from the device technology to the software levels.

I. INTRODUCTION

Future computing systems must do more with less: higher

throughput at significantly lower energy than today.

Otherwise, computing’s energy demands can far exceed

sustainable energy production (projections in [1], [2]).

Workloads such as Artificial Intelligence/Machine Learning

(AI/ML) require massive off-chip memory and are throttled

by the “memory wall” – significant time and energy spent

shuttling data between compute and memory chip(s) [3]. This

memory wall worsens as semiconductor technologies face the

“miniaturization wall” – the inability to gain device density in

2D due to physical limits and fabrication complexity [4]. We

face these walls just as memory needs explode for AI/ML, big

data, and networked systems [5]–[7]. Thus, the large demands

on memory, the memory wall, and the miniaturization wall

are three critical challenges for future computing systems.

While software generally assumes a random-access

memory address space with uniform latency and bandwidth,

software use of that memory is far from uniform. Von

Neumann recognized this fact, stating that “various parts of

this memory have to perform functions which differ somewhat

in their nature and considerably in their purpose” [8]. While

the current hardware memory hierarchy – SRAM, DRAM,

Flash – is already diverse, these devices alone are insufficient

to meet software needs. Instead of expecting new devices to

replace existing memory, we must focus on integration of

memory with new capabilities as a tool in our toolbox.

For logic circuits, the field-effect transistor (FET) reigns

supreme: we assume that will continue to be the case. In

contrast, for memory, an abundance of new and traditional

devices use a variety of physical mechanisms and materials

[9], [10]. Software and system architects typically want

memory that is better in all attributes; instead, we should

exploit the wide range of tradeoffs across technologies (Table

I) because domain specificity offers high efficiency. Memory

research currently often focuses on optimizing individual

attributes (e.g., specific entries in device comparison tables,

as in Table II). Instead, we must match sets of desired

attributes derived from software use cases (Sec. II).

Beyond being massive and diverse, memory must be

tightly integrated with compute. Von Neumann “ideally …

desire[d] an indefinitely large memory capacity” with any

"word … immediately available … considerably shorter than

… a fast electronic multiplier.” [11] Similar desires hold true

for energy. We envision tightly integrated – both physically

and architecturally – compute-memory systems: memory

matched to software, with abstractions to expose and exploit

diverse memory attributes (Sec. II, Fig. 2).

Unable to achieve this capacity, and “forced” into “a

hierarchy of memories” [11], the memory wall is often

incorrectly attributed to the von Neumann architecture ([12],

[13]). Physical implementation of memory hierarchy with

latency-capacity tradeoffs has led to memory sub-systems in

separate chips for technological, cost, and business reasons

(e.g., SRAM, DRAM, Flash). However, it is conceivable to

integrate massive, diverse memories onto compute chip(s);

we must focus on system-level benefits this brings (Sec. III).

Thus, irrespective of the architecture – von Neumann or

non-von Neumann, we must provide: (1) massive amounts of

memory with (2) diverse functionality, (3) tightly integrated

both physically and architecturally with compute (Fig. 1). We

must (4) exploit this integration in the software stack. We

focus on points (1)-(3). (4) is beyond this paper’s scope.

II. SOFTWARE USE CASES FOR DIVERSE MEMORIES

We focus on compute and memory, with bulk data storage

out of our scope. We consider three (of many) use cases (Fig.

3). Attributes include: (1) read/write access frequency; (2)

read/write address predictability (e.g., sequential access by

address order); and (3) data lifetime (i.e., time from variable

creation to destruction). Based on such software use cases,

diverse memory technologies degenerate into bands (Table

III). These bands guide future optimizations in a vast, multi-

dimensional design space (Fig. 4). For each band, we must

optimize the relevant combination of attributes, rather than

focusing on a sole few and neglecting others.

Type A. Frequent Reads, Infrequent Writes, Predictable

Accesses: Such software writes data rarely and reads written

data many times, with predictable (often sequential) accesses,

which enables data aggregation with write buffering and read

pre-fetching. Examples include types of AI/ML inference

weight memory and processor instruction caches (a few

thousand instructions executed billions of times – Fig. 3). The

write vs. read imbalance presents an opportunity to trade

write costs (energy, latency, endurance) for better reads

(energy, delay, retention) which must be co-optimized with

density, technology choice (e.g., MRAM, RRAM, PCM), and

encoding (e.g., multi-bit/cell). While reads are prioritized,

some minimal write characteristics are required depending on

system needs (e.g., hourly model updates for Large Language

Models). For example, improving MRAM/RRAM endurance

alone without improving write energy may not be sufficient

 2

for energy-constrained systems (Fig. 5 (a)), as utilizing

gained endurance cycles can come with a large energy cost.

Type B. Frequent Writes, Few Reads per Write, Short

Data Lifetime: In this use case, software writes data in (often

sequential) blocks, and soon reads it (sometimes only once),

discarding it thereafter (e.g., streaming I/O, AI/ML

activations, and data analytics, with block sizes and write-to-

read times of 10’s of kB in 10’s of μs [14], MBs in ms [15]–

[18], and 1-128MBs in seconds [19], [20]). Short data

lifetimes enable trading retention for speed, density, or

energy efficiency (e.g., gain cells [21], [22], MRAM [23],

and FeRAM [24]). Consider retention-speed trade-off curves

in gain cell design [21], [22] (Fig. 5 (b)): design choice (VTH)

along this curve must be driven by the application. This curve

can shift towards ideal corners by other design knobs (e.g.,

voltage), device improvement (sharper on/off transition or

lower SS), or circuit innovations (e.g., hybrid gain cells [25]).

Type C. Random Reads, Sequential Writes: Such software

reads randomly (e.g., Zipf-like) but writes sequentially across

contiguous blocks, e.g., buffers for a file system. For

example, during memory defragmentation, randomly updated

values are read and written sequentially back (e.g., in live

data write logs). Random read delay can be hidden via multi-

threading, but low read energy is critical. On-chip gain cells

offer much lower access energy than today’s off-chip DRAM.

III. TIGHT INTEGRATION WITH COMPUTE

The physical layer of memory-compute integration is

illustrated in Table IV. High bandwidth memory access

requires high connection density between memory and

compute [26]–[29]. While today’s 2.5D/3D advanced

packaging has connection densities that are far lower than on-

chip integration, the pin pitch of packaging technology is

projected to shrink to below 1 μm [30], [31], thus providing a

continuum of 3D interconnects down to very fine-pitched

(10’s of nm via monolithic 3D integration). These high

connection densities enable re-architecting the system to

exploit potentially massively increased bandwidth [26], [27].

Compute-in-memory (CIM) architectures aim to reduce

data movement by performing computations directly within

memory arrays. While CIM performs matrix-vector

multiplication with high parallelism [32], AI/ML models

require additional operations, e.g., vector-vector

multiplication for attention [17] and depth-wise separable

convolution [18], that are challenging for CIM [33].

Programmability and flexibility are especially challenging as

the memory/compute elements are fixed at design time.

Analog CIM non-volatile memory (NVM) device non-

idealities (Fig. 6 (a)) degrade accuracy due to large device

variations, weight programming non-linearity, limited on-off

ratios, state drift, and array IR drop [34]. Even chip-in-the-

loop fine-tuning fails to maintain software accuracy for

RRAM-based CIM [35]. Analog CIM requires costly DACs

and ADCs to convert/quantize data, limiting energy

efficiency, throughput, and density [35], [36]. Small weight

kernels have low array utilization and can’t amortize these

input and output peripheral circuits. Large weight kernels that

exceed single memory array capacity require post-ADC

digital accumulation, reducing energy efficiency [37], [38].

Analog CIM exhibits attractive array-level energy efficiency

for low-precision operations (e.g., <10 fJ per 4-bit OP), but

this diminishes rapidly with bit width (e.g., >100 fJ per 8-bit

OP) due to extra ADC energy to overcome thermal noise:

each extra bit of precision requires quadruple the capacitance

and energy [37]. As CIM arrays get larger, ADCs are noise-

limited, and amortization benefits saturate [37].

Digital CIM follows the same computing model as

traditional digital systems, with separate digital logic and

(digital) memory elements. Digital CIM provides full bit

accuracy, avoiding analog CIM’s SNR limitations. In some

cases, logic elements are tightly integrated within the array

itself (Fig. 6 (b)). To match memory cell pitch and achieve

high density requires simple logic elements – for example, 6T

SRAMs modified with a few added transistors to implement

basic logic [39]–[41]. This can impede programmability for

different workloads and increase runtime, e.g., bit-serial

compact ALUs to replace large-area multipliers [39].

If AI/ML models are larger than on-chip capacity, naïvely

relying on off-chip memory results in the usual memory wall –

regardless of analog CIM, digital CIM or other architectures.

The solution is to orchestrate AI/ML execution across a

system of multiple chips without any off-chip memories,

instead relying on the sum total of each chip’s local on-chip

memory/compute elements [16], [26], [42]. Combined with

special mappings of the AI/ML model to the system to

minimize inter-chip traffic by co-optimizing per-chip memory

size, heterogeneous inter- and intra-chip interconnects, and

idle power via fine-grained power management, such a system

can create the illusion of a much larger chip, e.g., a Dream

Chip with all compute/memory on-chip. Illusion is thus

distinct from traditional parallel processing. Such Illusion

Systems (Fig. 7) have been well established for digital

accelerator AI/ML systems of various sizes (e.g., 8× larger

than single chips) with system-level energy and execution

time within 5% of corresponding Dream Chips [16], [42].

Case Studies – Digital AI/ML Accelerators with Tightly

Integrated Memory: Hybrid Gain Cell (HGC) has 3.6×

density and lower energy than high-current (HC) SRAM (Fig.

8). HGC integrated with RRAM (Fig. 9) [43] for AI/ML

training and inference saves > 80% energy. Fig. 10 shows how

RRAM-based system non-volatility can provide up to 9×

energy benefits vs. traditional memory systems (e.g., SRAM,

off-chip DRAM and NAND Flash), even with foundry RRAM

macros’ similar density to foundry SRAM [15], [16].

IV. CONCLUSION

Memory must evolve from a uniform, random-access view

to a heterogeneous collection of different memories optimized

for different uses [44]. Memory’s diverse characteristic

tradeoffs must be exposed via appropriate abstraction to

software (e.g., endurance vs. retention, energy vs. latency) for

end-to-end device-system-software optimization. Tight

integration (monolithic, 3D, 2.5D) of new memory is key to

large capacity, low latency, and high bandwidth. Demands

will still outpace capacity; thus, proper co-design of multi-chip

system communication, e.g., Illusion Systems, is critical.

 3

agree

Fig.1: Future of memory: massive, diverse,

and tightly integrated with compute.

Table I: Memory table based on device-level specifications that is driven by software use. Assume 1T1R

structure for RRAM, MRAM, PCM with Si FEOL FET. Assume 3D NAND structure for FeFET. HGC:

hybrid gain cell with Si read transistor and OS write transistor. OS-OS GC: 2T gain cell with both
OSFETs for read and write. Standby power includes refresh power. Density is equivalent density after

considering multiple layers. Possibility of single vs. multiple layer integration on-chip with logic.

Read

energy
Write

energy
Standby
power

Read
latency

Write
latency

Endurance Retention Density
Single
layer

Multiple
layers

High
FeRAM,
DRAM
Flash

RRAM,
MRAM,
PCM,
Flash

DRAM Flash Flash

DRAM,
SRAM, OS-

OS GC,
HGC

Flash, RRAM,
MRAM, PCM,

FeFET,
FeRAM

3D Flash, 3D
FeFET

SRAM

Med.
RRAM,
MRAM,

PCM

DRAM,
FeRAM

SRAM

RRAM,
PCM,

FeRAM,
DRAM

FeRAM,
DRAM,
PCM,
RRAM

FeRAM,
MRAM

OS-OS GC,
HGC

3D DRAM,
3D OS-OS

GC

MRAM,
PCM,

RRAM,
FeRAM,

HGC

3D
FeFET,
OS-OS

GC

Med.-
Low

FeFET,
OS-OS

GC
FeFET

HGC, OS-OS
GC

MRAM,
OS-OS

GC,
FeFET

OS-OS
GC, HGC,

MRAM,
FeFET

PCM,
RRAM

DRAM
HGC, MRAM,
RRAM, PCM,

FeRAM
DRAM

Low
SRAM,
HGC

SRAM,
HGC,

OS-OS
GC

RRAM, MRAM,
PCM, FeFET,
FeRAM, Flash

SRAM,
HGC

SRAM
Flash,
FeFET

SRAM Flash
Flash,
DRAM

Table III: Improvements needed for each memory technology to be used in the software use cases, based on state-of-

the-art macro demonstrations. Integration can play a more important role than memory types, this is why 3D V-cache
and DRAM fall into the same band, while OS-OS gain cell and HGC differ. We exclude 3D Flash and 3D FeFET

from this table as they mainly target bulk data storage. Further research may realize CIM via these devices [46].

 SRAM 3D V-Cache DRAM OS-OS Gain Cell
Hybrid Gain

Cell
RRAM MRAM PCM FeRAM

A
Standby
power

Read energy &
speed & standby

power

Read energy &
speed & standby

power

Read speed &
capacity

Capacity
Write & read

energy &
endurance

Write &
read

energy

Write & read
energy &

endurance

Read
speed &
energy

B Density Standby power Retention Capacity Capacity
Endurance &
write energy

Write
energy

Endurance &
write energy

Read
energy

C Capacity
Read & write

energy & speed
Read & write

energy & speed
Capacity &

read & write speed
Capacity &
write speed

ALL ALL ALL ALL

Table II: Traditional memory table with each attribute in isolation.

Endur. = Endurance

 SRAM DRAM RRAM MRAM

Energy Low Med High High

Speed High Med Low Low

Density Low Med High High

Endur. High High Low Med

Fig. 3: Software use case data types categorized by read/write frequency and

access pattern. For type A, Zsim [45] shows instruction cache misses <5×10-6 with

thousands of instructions executed billions of times for each application run.

Fig. 2: Data-to-memory mapping by abstracting data types from

software applications and memory classes from memory
technologies. Memory classes are tightly integrated in the physical

layer via a continuum of 3D vertical interconnects through monolithic

integration or 2.5D/3D advanced packaging and allocated to different

data types through data buses.

Fig. 4: (right) Domain-specific memory macro-level needs (i.e.,

including all peripheral circuits), derived from software use cases

and system requirements. Three metrics sub-plots, where the
relationships among memory types can be (a) subsets, (b)

intersections, and (c) disjoint sets, exhibit the diverse and domain-

specific needs for the memory types.

 [5] J. Sevilla, arxiv:2202.05924 [6] K. Kambatla, J. Parallel Distrib. Comput. ’14 [7] H. Tataria, Proc. IEEE ’21 [8] J. von Neumann, “First draft of a

report on the EDVAC,” 1945 [9] S. Yu, CRC Press ’22. [10] H.-S. P. Wong, Nat. Nanotechnol. ’15 [11] J. von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946 [12] S. Basu, Proc. IEEE ’19 [13] X. Zou, Sci. China Inf. Sci. ’21[14] X. Jin, SOSP ’17 [15]

K. Prabhu, Symp. VLSI Circ. ’24 [16] K. Prabhu, JSSC ’22 [17] A. Vaswani, NeurIPS ’17 [18] A.G. Howard, arXiv:1704.04861 [19] Apache Parquet [20]

J. Peltenburg, ICFPT ’20 [21] Shuhan Liu, IEDM ’23 [22] Shuhan Liu, IEEE T-ED ’24 [23] K.-F. Lin, ISSCC ’24 [24] T. Francois, IEDM ’21 [25]
Shuhan Liu, Symp. VLSI Tech. ’24 [26] R.M. Radway, IEDM ’21 [27] T. Srimani, IEDM ’23 [28] Y. H. Chen, ECTC ’20 [29] M.-F. Chen, ECTC ’19

[30] H.-J. Chia, ECTC ’23 [31] W.-M. Wang, ECTC ’24 [32] Q. Dong, ISSCC ’20 [33] X. Wang, TCAS-II ’22 [34] N. Lepri, IEEE T-ED ’22 [35] W.

Wan, Nature ’22 [36] Q. Wang, IEDM ’19 [37] B. Murmann, IEEE Trans. VLSI Syst. ’21 [38] J. Yue, ISSCC ’20 [39] H. Kim, JSSC ’21 [40] Y.-D. Chih,
ISSCC ’21 [41] E.-J. Chang, Symp. VLSI ’23 [42] R.M. Radway, Nat. Electron. ’21 [43] Shuhan Liu, IEDM ’24 (to appear) [44] P. Levis,

https://dam.stanford.edu/ [45] D. Sanchez, Comput. Archit. News ’13. [46] H.-T. Lue, IEDM ’24 (to appear) [47] N. Pantano, ECTC ’24 [48] A. Biswas,

IEEE JSSC ’19 [49] S. Xie, ISSCC ’21 [50] X. Sun, IEEE TED ’21 [51] S. Angizi, T-CADICS ’19 [52] K. Zhang, ISSCC ’24 [53] S.-Y. Wu, Symp. VLSI
Tech. ’09 [54] G. Gobieski, ASPLOS ’19 [55] D. Garrett, ISSCC ’23 [56] T.F. Wu, ISSCC ’19 [57] S. Park, J. Syst. Arch. ’11 [58] J. Wang, IEEE SSCL

’21 [59] S. Lee, IEEE Access, ’18

References (First Author, Venue,

Year, for bevity) [1] N.C.

Thompson, arxiv:2007.05558 [2]

B.C. Lee, arxiv:2405.13858 [3] S.
Williams, Comm. ACM ’09 [4]

H.-S. P. Wong, Proc. IEEE’20

 4

Table IV: Memories can be in the logic process itself (SRAM), in package (2.5D/3D chip stacking), monolithically 3D integrated in the back-end-of-line,
or monolithically 3D integrated atop Si FETs in the front-end-of-line. Monolithic integration has higher connection pin density than in-package integration

but requires fabrication at low temperatures. Off-chip package interfaces have limited bandwidth and significant latencies due to the macroscopic size and

high capacitance of package pins and limited number of parallel connections. High-bandwidth memory (HBM) uses 5 – 50 μm-sized through-silicon vias
(TSV) [26],[47] to bring logic and memory closer together, enabling high-bandwidth and lower-energy memory access. The interface protocols (e.g., DDR,

HBM, PCIe, CXL, UCIe), are required as off-chip devices are fabricated by multiple entities, but can introduce energy, latency, and bandwidth overheads.

These protocols are managed by software (from device drivers to operating systems), with minimum hardware support such as memory management units.

 SRAM DRAM HBM DRAM Flash Gain cell RRAM MRAM PCM FeFET FeRAM

Integration
Logic

process

In-package

(e.g. DIMM)

In-package (3D stacked

on logic chip) on

interposer / substrate

In-

package

Monolithic 3D in BEOL or

Monolithic 3D in BEOL

with Si FET FEOL

Monolithic 3D

in BEOL with

Si FET FEOL

Monolithic 3D

in BEOL with

Si FET FEOL

Monolithic 3D

in BEOL with

Si FET FEOL

Monolithic 3D in Si

FEOL or monolithic

3D in BEOL

Monolithic 3D

in BEOL with

Si FET FEOL

Connection pin density High Low Medium Low High High High High High High

Application Cache
Main

memory
Main memory Storage Cache, main memory

Storage, main

memory

Cache, main

memory

Storage, main

memory

Storage, main

memory

Storage, main

memory

Fig. 5: (a) Write energy-endurance subspace divided into

three regions: ideal, domain-specific, and not-of-interest. The
high-endurance, high-energy corner is not of interest, as the

high write energy discourages frequent writes. (b) Gain Cell

retention-speed subspace with trade-off curve (black) [22]
that arises from a limited transistor ION/IOFF ratio. Curve shifts

towards ideal corners (green) through other design knobs (e.g.

voltage), device improvements like smaller SS and on/off
transition region, or circuit innovations like hybrid gain cells.

Fig. 8: (a) Hybrid gain cell has density 3× of HD SRAM and scalable to FinFET nodes with

a cell size of ~1CGP×4MP, where CGP is the contacted gate pitch and MP is M0 pitch with

an AB mask. The OSFET requires a modest channel length (LCH) of 34 nm assuming CGP
of 51 nm. (b) ITO FET with LCH = 40 nm, experimentally demonstrated. (c) Cadence

Spectre circuit simulation for hybrid gain cell vs. SRAM memory macro with the same

peripheral circuit and array architecture at 5nm node. HGC has less area, read energy, and
standby power compared to HC SRAM iso-frequency (2GHz) at the macro-level.

Fig. 6: CIM architectures can be broadly categorized into analog CIM

or digital CIM. Analog CIM can be implemented with charge-based

memories (SRAM [48], DRAM [49]) or resistance-based memories
(RRAM [35], PCM [50], MRAM [51]). Analog CIM operates based

on Ohm’s Law and Kirchoff’s law, with MVM results represented by

the accumulated output current along bitline (BL) [35]. Digital CIM is
typically implemented with charge-based memories with a localized

computing unit that operates on the stored weight and the input

activation signal. The resulting digital outputs are then summed using
an adder tree to yield the final accumulated result [39]. The bitcell-

wise digital unit can range from a simple logic gate (e.g., NOR [40]),

to more sophisticated circuits with some area penalty (e.g., a NOR
gate, a full adder and multiplexer [39]).

Fig. 9: Example of diverse memories integrated on the same chip. TEM images of
(a) gain cell (b) RRAM and Si FET monolithically integrated on the same 130nm

node chip. Monolithic 3D integration of gain cell and RRAM combines the non-

volatility of RRAM and high endurance of gain cell [43]. High-bandwidth data
transfers between memories is enabled by high-density vertical 3D interconnects.

Fig. 10: RRAM 1T-1R bit cells are 3× denser than 6T SRAM (0.042 µm2 [52] vs. 0.127 µm2

[53] in TSMC N28). However, foundry-provided RRAM macros (including peripherals,

controllers) do not provide the full density benefits at the system level [15], [16]. RRAM’s
on-chip non-volatility provides substantial energy benefits for infrequent and intermittent

edge AI/ML applications [54], [55] by reducing both idle energy between inferences and

inference energy via RRAM-enabled fine-grained power gating [15], [16], [56]. For SRAM-
based chips, after a certain idle period, it is more energy-efficient to use backup NAND

Flash [57] for weights (i.e., turning the chip off, re-fetching weights for new inputs).

RRAM-based systems can thus reduce energy by 9× for AI/ML applications (e.g.,
MobileBERTTINY [15]). Low-leakage SRAMs (e.g., 8T SRAM [58]) shift this point to lower

duty cycles, but incur large area penalties. Off-chip DRAM [59] has low refresh power, but

its off-chip access results in 1.6× (or higher) energy vs. RRAM-based systems.

Fig. 7: (a) The “Dream Chip”
densely co-locates all memory and

compute on-chip, quickly accessible

at low energy. (b) Illusion System
[42] of multiple chips on a sparely

used inter-chip network, each with a

certain minimum amount of on-chip
memory and mechanisms for quick

chip wakeup and shutdown.

 Acknowledgements: Department of Defense Microelectronics

Commons California-Pacific-Northwest AI Hardware Hub,

Eccalon/DoD, National Science Foundation (award number
2235329), SRC JUMP 2.0 CHIMES Center and PRISM Center,

industry affiliates of the Stanford SystemX Alliance, Stanford

Non-Volatile Memory Technology Research Initiative
(NMTRI), and Stanford Differentiated Access Memory (DAM)

programs. We thank graduate students, W.-C. (Harry) Chen and

X, Wu, for editing and reviewing the manuscript, Prof. Boris
Murmann for discussions, and Nvidia for providing resources

for simulations. Present affiliations are: Jimin Kwon, UNIST,

Korea; Robert M. Radway, University of Pennsylvania, USA.

